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ABSTRACT

Frequency response techniques are very valuable tools for the
analysis and synthesis of linear control systems. To extend these tech-
niques to the analysis of a nonlinear control system, it is necessary
that the nonlinearity be described by an equation in the frequency domain
and it also requires that this equation be compatible for use with the
transfer functions of the linear components. This final report deals in
general with the analysis of nonlinear control systems by describing func-
tion techniques and in particular with the derivation of the describing
functions for the multiple nonlinearities that are often encountered in
practice. The describing functions which are both amplitude snd frequency
dependent are assoclated with the multiple nonlinearities in which there
are one or more energy-storage units together with a nonlinear character-
istic which is related to the energy-storsge property in such a way that
a mathematical separation into distinct linear and nonlinear parts is not
feasible. Therefore, for multiple nonlinesrities a family of describing
functions has to be generated. Such families of describing functions are
generated for two multiple nonlinearities; (1) a deadzone followed by a
first order linear block and backlash. and (2) a hysteresis relay followed
by a second order linear block and backlash. Furthermore the generated
data are presented in their most useful form (Nichols plots as well as
tables).

The technique outlined in this report for obtaining the describing
functions can be used in computing the describing functions for any other
nonlinear combinations. A special method has been developed to take care
of the amplitude dependency of the describing function family of the

multiple nonlinearity containing a hysteresis relay. A number of methods

viii




to find the transient response and the closed loop frequency response from
the describing function data are outlined. A few sample problems are also
presented indicating the use of the derived describing functions and the
results are compared with the actual analog computer simulations of these

problems.



CHAPTER 1

INTRODUCTI ON

The Nyquist, Bode and Root locus techniques which form the basis of
feedback system analysis are limited in applicability to linear systems.
Methods available for analysis of nonlinear systems are not nearly as
plentiful and as general in application as those developed for linear
systems. Frequency response techniques are very valuable tools for the
analysis and synthesis of linear systems. Part of the value lies in the
simplicity of the block diagram and the transfer function representation
and manipulation while the other part of the value lies in the ease of
computation and interpretation using Bode diagrams and the Nichols plots.
The difficulties encountered in nonlinear analysis are related to the ex-
ceedingly complex behavior of nonlinear systems as compared with the
linear systems. For example, the response of a linear system is linearly
dependent on the amplitude of the excitation; increasing the amplitude
merely increases the amplitude of the output by the same multiple. With
nonlinear systems, the output can be significantly dependent on the level
or amplitude of excitation. Furthermore, if a linear system 1is excited
by a sinusoidal forcing function, the output will be a sinusoid of differ-
ent amplitude and phase but having the same frequency. The output of a
nonlinear system forced in a similar manner may contain harmonics of the
excitation frequency. It is desifable that the powerful methods of fre-
quency response techniques be extended in such a way that they will be
applicable to analysis and systhesis of nonlinear control systems.

Representation of nonlinear systems in a block diagram form is not

very difficult. However, the nonlinear blocks impose a few restrictions



on the manipulation of the block diagram. The extension of the transfer
function representation is more difficult; it requires that the nonline-
arity be described by an equation in the frequency domain, and it also
requires that this equation be compatable for use with the transfer func-
tions of the linear components. This report deals in general with the
analysis of nonlinear control systems by describing function techniques,
and in particular with the derivation of the describing function for the
multiple nonlinearities that are often encountered in practice. A dis-
cussion of all known frequency response techniques applicable to the
describing function method is given. A few sample problems are presented
which indicate the use of the derived describing functions. The results
of these sample problems are compared with the results obtained from the

actual analog computer simulations of these problems.




CHAPTER I1

DESCRIBING FUNCTION METHODS

Since the very first publication of the paper concerning the de-

. . . 1 . 2-18
scribing function technique by R. J. Kochenbruger™ , many articles
have appeared in different journals and books on this subject. The de-
scribing function method is classified as a frequency response method
rather than a time domain approach. It is based on an analysis which
neglects the harmonic effects in the system. The basic idea involved in
analyzing a nonlinear control system by this method is to replace the non-

linearity in the system by its describing function and use any suitable

linear frequency response technique to analyze the system.

2.1 Definition: The describing function is defined as the ratio of the
complex number representing the fundamental sinusoidal component of the
output of the nonlinearity to the complex number representing the sinu-

soidal input.

r + e X z (]

Figure 1 - A Control System
In terms of the elements shown in Figure 1, the describing function is

defined as
Zl(jw)
Cp = X(jw) )




where 'GD‘ is the describing function, Zl(jw) represents the fundamental
component of the output Z(jw) determined by the Fourier analysis and X(jw)
represents the sinusoidal input signal x = X sin ot.

‘GD' may be a function of frequency as well as the amplitude of the
input to the nonlinearity. If no energy storage elements are present in
the nonlinearity 'N°, then GD is a function of the amplitude X alone. As
can be seen, the replacement of the nonlinearity in a control system by
its describing function is valid as long as the input to the nonlinearity
is very nearly sinusoidal. The assumption which is usually made to justi-
fy replacing the nonlinearity by its describing function is that the
linear elements in a control system severely attenuate the higher har-
monics generated by the nonlinearity and that only the fundamental com-
ponent appears at the input of the nonlinearity. This assumption is often
unnecessary depending upon the extent to which higher harmonics appear—
ing at the input to the nonlinearity affect the amplitude and phase of
the describing function. Now, consider the meaning of the describing
function in a little more detail. When a nonlinearity is replaced by its
describing function, a single sine wave of fundamental frequency is made
to represent the nonsinusoidal output of the nonlinear element driven sinus-
oidally. This single sine wave is chosen as best in some sense. When a
Fourier analysis is applied to obtain the best sine wave from the nonsinus-
oidal output of the nonlinearity, then the result is the best in a minimum-
rms-error sense. It is possible to define many other forms of unconventional
describing functions. An example can be given as to obtain a sine wave from
the nonsinusoidal output of the nonlinearity in such a way that it will re-
duce the average error or the difference between the area of the selected

sine wave and the actual output of the nonlinearity be zero. Another

example of selecting the best sine wave may be such that a sine wave has



the amplitude equal to the peak value of the amplitude found in the non-
sinusoidal output of the nonlinearity. But these unconventional describ-
ing functions do not appear to be of general usefulness. 1In fact, when
the linear elements of the closed loop system tends toward a perfect low
pass filter, the error of the conventional describing function tends to-
ward zero.
A new RMS describing function19 has been defined on an equivalent

energy basis for single valued nonlinearities. The definition in terms

of Figure 1 1is,

i~ 21 —1/2
-21? _g Z'2 dwt
RMS Describing Function = o
L jﬁ (Xzsinzmt) dwt
21 )

Experimental evidence cited in the reference (19) indicates that the new
RMS describing function gives more accurate results in a number of sys-
tems than does the conventional describing function. Since the new RMS
describing function is prohibitively difficult to evaluate and use for

multivalued nonlinearities, it is not employed for general use.

2.2 Stability Analysis: When the block diagram of any control system has

been reduced to a single loop containing a nonlinear block as shown in

Figure 1, the g relationship can be written as

c_ Gl(jw) G2(jw) Gy 2
R 1+ Gl(jw) Gz(jw) GD

Let G(jw) = Gl(jw) Gz(jw)

The stability of the system is determined from the characteristic equation

G(jw) GD = -1 (3



The describing function, GD, may in general be a function of amplitude
and frequency of the sinusoidal excitation. Many times nonlinear con-
trol systems exhibit constant amplitude and constant frequency oscilla-
tions. These oscillations are called limit cycles. The occurence of
limit cycles in the nonlinear systems makes it necessary to define in-
stability in terms of the acceptable magnitudes of oscillations, since a
very small nonlinear oscillation may not be detrimental to the perfor-
mance of a system. On the contrary, sometimes such oscillation may even
improve the performance of a system containing stiction or backlash.
The limit cycles are called soft self-excited when they occur even in the
presence of a very small input signal to the system. When the limit
cycles occur only in the presence of very large input-signals, then they
are called hard self-excited limit cycles.

Consideration of Equation (3) and the nature of GD and G(jw) shows
that the self-sustained oscillations may exist when Equation (3) is satis-
fied, or when

G(jw) = - (W)

cfﬂ“

For a particular system, the functions G(jw) and - é; can be sketched in
the complex plane. The intersection between the loci of G(jw) and - éL
corresponds to the solution of the characteristic Equation (3). It thgs
represents a possible periodic solution to the equations describing the
system.

If the nonlinearity in a system is such that its describing function
is not a function of frequency and does not introduce any phase shift,
then the describing function may be considered as a variable gain. The

control system containing such a nonlinearity is stable if it is stable

for the maximum gain. Single valued nonlinearities are of this type.



When such nonlinearities are present in conditionally stable systems,
root locus and Bode plots are probably the simplest to use, since a
variable gain introduces no change in any of the curve shapes.

Describing functions which are both amplitude and frequency sensi-
tive are associated with components in which there are one or more energy
storage units together with a nonlinear characteristic which is related
to the energy-storage property in such a way thsat mathematical separation
into distinet linear and nonlinear parts is not feasible. For such de-
vices a family of describing functions has to be generated and a digital
or analog computer may be necessary. For the stability interpretations
of the control system containing nonlinearities whose describing functions
are both amplitude and frequency sensitive, Nichols charts may be the most
convenient to use. Chapter IV of this dissertation clearly outlines the
use of Nichols charts in such cases.

When the intersection between G(jw) and - éL has been determined or
D

when the solution of the characteristic Equation (3) has been found, it
. . . . 3 18

is necessary to examine such a solution by perturbation techniques to
determine whether it represents a convergent equilibrium or a divergent

equilibrium point.



CHAPTER 111
THE DERIVATION OF THE DESCRIBING FUNCTIONS
FOR TWO MULTIPLE NONLINEARITIES

Describing functions for a single nonlinearity have been derived by
many authorsl—11 in the past. Describing function analysis has been
successfully applied to control systems containing two nonlinearities
which are adjacent in the control system.lz'—15 In such cases a describing
function of two nonlinearities is generated by considering them as a
single nonlinear element. Sridhar7 has suggested a general method for
deriving describing function for a certain class of nonlinearities. By
this method it is often possible to derive the describing function of
two adjacent nonlinearities.

When two nonlinearities are separated by one or more linear blocks,
the analysis becomes more complicated due to the fact that the input to
the second nonlinearity depends upon the first in a manner such that it
involves frequency. When the intervening linear block is of high order,
it will act as a good low pass filter and the input to the second non-
linearity can be assumed sinusoidal. In such a case the analysis, even

though a bit more complicated, can be carried out by techniques described

by Thaler and Pastel.6

3.1 First Multiple Nonlinearity: Consider the problem of deriving the

describing function of two nonlinearities separated by a first order linear
block. Since the linear element contains insufficient filtering to per-
mit the assumption of a sinusoidal input to the second nonlinearity the
describing function has to be derived by considering the nonlinearities

and the first order linear block as one nonlinear element. Such a de-

scribing function is amplitude and frequency dependent. A combination of
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a deadzone with the half width as '®' and the backlash element with the

width 'W' separated by a linear block H(s) = T_§—%§ is shown in Figure 2.
r(t) I yAaRo) K |y 2" (£)
(] > —_—'>'—
/—16 — (Ts+1) W

Figure 2 - First Multiple Nonlinearity

Actually Figure 2 can be redrawn as follows.

r(t)

of 1

x(t) . 1 y(t\) z(t) z'(t)

(Ts+1) —_

N

Figure 3 - Nonlinearity Equivalent to First Multiple Nonlinearity

If the nonlinearity of Figure 2 is a part of the closed loop system
as shown in Figure 1, then it can be replaced by Figure 3 and the gain K
can be combined with the linear block. So it is only necessary to derive
the describing function for Figure 3. The response x(t) of the deadzone

to a sinusoidal input function r = I sin wot is indicated in Figure 4.

L

(1-6) \
] // T 7~;2ﬂ
T kegd no2 2 o

//;3=sin"1 5/1

N

/ .

Figure 4 - Outpdt of the Deadzone Element
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In terms of the elements given in Figure 3 and Figure 4, x(t) can be

written as

x(t) =0 0 < wt<p
= (I sin wt - o) B<wt<m-§
=0 m-g< wit=sm+ B
= (I sin w_t + 8) n+p <wt2n~p
=0 2n - B < wot <2n - - - (5)

To compute y(t), let H(s) be subjected to a periodic function x(t).

Define xl(t) such that it equals x(t) for only one cycle or
xl(t) = x(t) - - -0 < wot < 2n
=0 ---wts>2n
o

o

Then x(t) = ; xl(t - %?5) u(t - %?5 where u is a unit step function.
o

K=0
[* o] _Z.TES
w
The Laplace transform of x(t) = X(s) = Xl(s) E e °
K=0
The complete response for all time is therefore,
-1
y.(t) = Ji‘ X(s) H(s)
-1
X, (s) H(s)
A
- 2MS/W

(1-e )
In evaluating the complete response yc(t) for all time the residue of
Yc(s)eSt at the singular points of X(s) constitute the steady state re-
sponse and those at the singular points of H(s) constitute the transient.16

This transient solution can therefore be written as

st

Xl(s)lKSJQ

Y (t) = E Residue of —— at the poles of H(s) (7)
T -2ns/w

(l-e °)
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Subtracting the transient response from the complete solution for the first

period, the result will be the steady state solution y(t).

-1
y(£) =y () - yp(0) = 4 X () -y (8) - - - 0 < ut < 2m —--(8)

[ ——
As shown in Appendix I, y(t) can be derived by a consideration of Equations
(5), (6), (7), and (8). The steady state output z(t) of the backlash

element can be determined from y(t). Let the maximum of y(t) = M and

suppose this maximum occurs at t = TM. Then for M > W
z(t) = y(t) - W/2 - - -0<tx< TM

= y(TM) -W/2 - - - TM <t< TB

= y(t) + W/2 - - - T, s t< n/wo

where T, is defined by W = y(TB) - y(TM)' . ForW/2 <M<W
z(t) = - M-W/2) - ---o0<tc< T,
= y(t) - W/2 - - - - - - Tc St=<T,
=M-W/2 - - - - -~ - T, <t < m/w

where TC is defined by y(TC) =W - M. The describing function can then
be determined as indicated in Appendix II. For values of Two<< 1, the
two nonlinearities can be considered as one nonlinear element and its
describing function is derived in Appendix III. The values of GD and

¢ for various values of nondimensionalized frequency Two, normalized ratio

OK/w and ®/1 are listed in Tables I through VII. Since the intent is to pre-

sent the data in such a way that it can be conveniently used, Nichols plots

of the describing function are given in Figure 5 through Figure 11.
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3.2 Second Multiple Nonlinearity: Another problem of interest is that

of two nonlinearities separated by a second order linear block which is
underdamped. A nonlinear block of relay with hysteresis, second order

linear block and backlash is shown in Figure 12.

¥
r(t) M1 o K v () /o

_,16,__ f 2, 2 2%s _/w

(s /wn +

Figure 12 - Second Multiple Nonlinearity.

The input to the second nonlinearity, that is backlash, can be rich in
harmonics when the nonlinear block is driven with a sinusoid. The harmonic
content will of course be a function of input sinusoidal frequency, zeta
and w_ - Therefore, the describing function has to be derived by consider-
ing the nonlinearities and the second order linear block as one nonlinear
element. Figure 13 is functionally equivalent to Figure 12. Therefore,

the describing function for Figure 13 will be derived. Let MK' = K.

£,

i

|

10 xce) 1 vt /{// 2t) . Lz ()
LTMF | | 2o 222 /w%

n

Figure 13 - Nonlinearity, Equivalent to Second Multiple Nonlinearity

The response x(t) of the relay with hysteresis, to a sinusoidal input

function r = I sin wot is shown in Figure 1l4.

x(t) l
1.0 | 2m Ly r3=sin'1 0/1

T
- Bk Wt ——

Figure 14 - Output of the Relay with Hysteresis.
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From a consideration of Figure 14, it can be seen that x(t) is always a
square wave with a unity amplitude and its frequency is equal to that

of the input excitation. Only the phase shift changes with the magnitude
of I. Therefore, for all practical purposes the second order linear block
has an input of a square wave with the fivxed amplitude of unity and fre-
quency equal to W, The first step is, therefore, to derive the output
y(t) of the second order linear block when excited with a square wave.
From y(t), z(t) can be computed exactly in the same manner as the previous
nonlinearity and then the fundamental Fourier Component A1 and B1 of z(t)
can be obtained by numerical techniques. The details of the computation
of y(t) are shown in Appendix IV, while the computation of z(t) and the
fundamental Fourier components A1 and B1 are indicated in Appendix V,

When wo/mn << 1.0, the nonlinearities can be considered as being adjacent
to each other and its describing function is derived in Appendix VI. Note
that GD is computed for © = 0.0 and I = 1.0, since for a given ® the phase
shift of sin—1 /1 for various values of I can be added to the describing
function and its magnitude can be divided by the value of I later on. The
values of the describing function GD and phase ¢ for various values of
the nondimensionalized frequency wo/wn,normalized ratio K/W and zeta are
listed in Table VIII through Table XIII. Again the intent being to present
the data in its most useable form, the Nichols plots of the describing
functions are given in Figure 15 through Figure 20. The use of these plots

are a little complicated but once the technique is understood by the user

it is quite straightforward.
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CHAPTER 1V

SAMPLE PROBLEMS INDICATING USE OF THE
GENERATED DESCRIBING FUNCTIONS

The describing functions for two multiple nonlinearities have been

derived in the last chapter and the Nichols Plots of these describing

functions are given in Figure 5 through Figure 11 and Figure 15 through

Figure 20. 1In using these plots there are several variables which allow

the engineer a great deal of flexibility in desiging for the proper con-

trol system performance. A typical control system is shown in Figure 21

where GL(ij) is any linear plant transfer function and G, is the describ-

D

ing function of the combined nonlinear block.

GL(s)

[p]
i‘
Voo

l
=
~
w0
-
=z
N

N
Y ~

rS

In using
(D
(2
(3

Figure 21 - A Typical Control System

the describing function curves, several points must be considered:
The problem parameters that are fixed and that are variable;
Whether all limit cycles are to be avoided as undesirable;

The distribution of gain between the linear and the nonlinear

block.

4.1 A Sample Problem Containing First Multiple Nonlinearity: Consider a




r----------
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control system in which the nonlinear block consists of a deadzone, back-
lash and a separating linear block. Since for the stability analysis the
characteristic equation
G (Jug) Gp(T,0 ) = -1
has to be solved, the following steps indicate the procedure.
(1) Form a dK/Wratio and select the corresponding describing func-
tion family of Nichols plot from Figure 5 through Figure 11.
(2) Plot K |GL| versus its phase angle GL with Tw, as a parameter.
(3) Superimpose the curve plotted in step (2) on the describing
function family selected in step (1) and look for an intersec-
tion between these curves at a proper value of Two. If the
intersection exists, then it can be a convergent or a diver-
gent equilibrium point and a stable or an unstable limit cycle

may exist. Consider a specific problem in which

GL(jwo) = jwo(jw05+ 1) )
K= 1.0,
b =W= 1.5 units ,
and T = 0.1

The plot of \GL\ versus GL with 0.1 w, as the parameter is shown in
Figure 22. As 8K/W = 1.0, Figure 5 is the appropriate describing func-
tion family. Superimposing IGL] versus GL plot on Figure 5 indicates
that the intersection occurs at W, = 1.25 radians/seconds. Further ex-
amination by perturbation technique18 reveals that this intersection is
a convergent equilibrium point and the system will have a stable limit
cycle. The limit cycle amplitude can be read off the curves if this in-

formation is desired. The intersection point is on the curve 6/1I = 0.41.
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3 . 1.5 . . ]
Since 8 = 1.5, I = «=—— = 3.56., There are many more variations to this

0.41
example which can be presented. For instance 'K' can be varied which in
turn changes the important OKAW parameter. The time constant T can also
be varied.

It should be noted that if no intersection between \GL\ versus QL curve
and the appropriate describing function family exists, it does not neces-
sarily mean that the system is stable. On the contrary such a system may
be completely unstable for it may possess negative phase margin. This
can be determined as follows. Suppose the system is completely unstable.
Then the amplitude 'I' will continusously increase in time and will become
appreciably larger than © and W. 1In such cases the appropriate describing
function family of Nichols plot will be reduced to a single curve corre-
sponding to /1 = 0.0. If we can locate a frequency on 1GL| versus GL

curve such that the gain in dbs at this frequency is identical to the

corresponding frequency on the curve reduced from the describing function

family of Nichols plot for /1 = 0.0, then the system is completely unstable;

otherwise it is stable.

L. 2 A Sample Problem Containing Second Multiple Nonlinearity: When a con-

trol system contains a relay with hysteresis followed by a second order
linear block and backlash, the stability analysis is similar to that dis-
cussed earlier in this chapter; but the procedure of investigating the
existence of limit cycles is altogether different. The describing func-
tion for the second multiple nonlinearity was derived for a particular case
in which &, the half hysteresis width of the relay, was considered zero and
the input sinusoidal excitation to the relay had a fixed amplitude of 1.0.
Since in a control problem, the relay hysteresis may not be zero and

the amplitude of the limit cycle may be other than 1.0, the derived des-
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cribing function curves have to be used with some care. Note that the

describing function was defined (refer to Figure 13 and Appendix V) as

T2 T
l G \ =\Jfl__:_fl_ (9
D I

where A1 and B1 are the fundamental Fourier components of z(t). Equation

(9) can be written as

A2+ 2
c =N1__ 1 1
D 1/G/1)) ° %
. 20 log [k%]] = 20 log ——iléél-— + 20 log &

D 22 ,p2

1 1
= 20 log . 20 log [z/(é/iz] + 20 log 6.

2 2
4 *+ B

It was also observed that the relay hysteresis merely produces a phase
shift in its output when excited with a sinusoid; and the output wave
shape is unaltered eventhough the amplitude of the sinusoidal excitation
is varied. So, for a general problem, among the parameters in the derived
describing function curves, the phase shift has to be modified by sin_1
8/1 and the magnitude by [gb log (1/6/1) + 20 log g] . Note that 'I' can
never be less than & and for & = I, sin_1 5/1 = 90 degrees. The procedure
of modifying and using the derived describing function curves for a general
problem is as follows.

(1) For a certain problem zeta, wn, K, 6 and W are given. Also the
linear block transfer function G, is given. Plot K |GL| versus its phase

L

angle GL with wo/wn as the nondimensionalized frequency.

(2) Find 20 1log o
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(3) Select the proper describing function curve for appropriate

K/W and zeta, from Figure 15 through Figure 20.

(4) Overlay the describing function curve obtained in step (3) on
the plot of K| GLI versus 6 obtained in step (1), coinciding
the (0db, -180°) point of the describing function curve with

the (0db, -90°) point of the plot of K| Gd versus 9L.

(5) Move the describing function graph directly upwards by the

dbs obtained in step (2).

(6) Obtain a curve of 20 log (I/0) vs sin~1 (6/1) with the ratio
of 0/1I as running parameter. Note that this is a generalized
curve and should be kept with the describing function plots

for any future use. Such a curve is shown in Figure 24.

(7) Superimpose the curve of Figure 24 on the describing function
curve by coinciding 0/I = 1.0 point at any frequency on the

ts

(2]

describing function curve. If the curve of Figure 24 interse
the plot of K \Gd versus GL at the same frequency then we have
a limit cycle at that frequency. The amplitude of the limit
cycle can be determined from the value of /I at which Figure

24 intersects with the plot of K\(%) versus 6. .

Consider a sample problem shown in Figure 23. The plot of K [GL‘ is
shown in Figure 25. Since KW = 1.0 and zeta = 0.1, the proper describing

function curve is Figure 15.
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Figure 23 - A Sample Problem Containing Second Multiple Nonlinearity.

Now 20 log & = 20 log 3.0 = 9.542; therefore superimpose the describing
function of Figure 15 on Figure 25 such that the zero db axis is exactly
9.542 dbs above, and -180° point on the describing function curve coin-
cides with -90° point of the plot of K \GL\ versus GL curve. Superimpose
Figure 24 on the describing function curve such that 8/I = 1.0 point
coincides with frequency wo/wn = 0.823. The curve of Figure 24 will
intersect K \GL\ versus OL curve at wo/wn = 0.823 and 6/1 = 0.2. So the
limit cycle frequency is 0.823 radians/seconds and the amplitude

I =0/0.20 =3/0.20 = 15.0 units.

It is interesting to note that for values of 0 approaching zero, the
quantity 20 log & is going to approach minus infinity. According to the
step (5), the selected describing function plot will have to be moved to
minus infinity and then Figure 24 will be used to find the appropriate
intersection with the K\‘GL\ versus SL curve. As a matter of fact when
6 = 0, there is a simpler procedure to solve the problem since the des-
cribing function plots shown in Figure 15 through Figure 20 are derived
for 6 = 0.0 and I = 1.0. In such a case simply overlay the describing

function curve obtained in step (3) on the plot of K \GL\ versus GL
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obtained in step (1), coinciding the (0db, -180°) points of both the curves
with each other. Move the describing function curve directly up or down
and locate the intersection between the describing function plot and K \GL\
versus GL plot at a common frequency. This will be the limit cycle fre-
quency. The amplitude of the limit cycle can be found from the amount of
displacement of the describing function plot since it will be equal to
20 log I.

In practice, many control systems have more than one nonlinear rela-
tionship in the control sequence. Some practical cases in which the two

multiple nonlinearities discussed in this dissertation are present include:

(a) A simple relay servomechanism in which a relay with hysteresis
drives a torque motor, the output shaft of which has a free

play.

(b) Systems containing two stages of pneumatic amplification,
the first stage amplifier having a deadzone while the second
stage has a first order lag and it drives a gear train which

has a backlash.

(¢) A gyroscope measuring the difference between the desired roll
angle and the actual roll angle having a deadzone, actuates a
servomechanism having a first order lag which in turn actuates

the ailerons which has a free play.

(d) A time optimum control system in which an on-off device drives
an underdamped second order servo, the mechanical output of

which has a backlash.
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CHAPTER V
ACCURACY CONSIDERATIONS AND COMPARISON
WITH ANALOG COMPUTER RESULTS

The describing function is derived under the assumption that the
input signal to the nonlinearity element is sinusoidal. It follows that
the describing function will provide accurate results when this basic
assumption is satisfied. Admittedly the describing function method is
an approximate one since the results are less accurate when the harmonics
in the input signal to the nonlinearity are not negligible. There is no
way to compute & universal 'corrected' describing function since the error
depends on the filtering action of the linear system in which the non-
linearity is incorporated. A knowledge of the harmonic content in the
output of the nonlinearity when subjected to a sinusoidal input, provides
an indication of the possible difficulties and this must be compared with
the filtering capabilities of the linear system.

In the analysis of nonlinear control system by describing function
methods, intersections between the locus of\ GL\ versus GL and the appro-
priate family of Nichols plots, define stable or unstable limit cycles and
the interpretation is simple and accurate. However, difficulty sometime
arises owing to intersections which should not exist and which predict
limit cycles that do not occur in the physical system. Another difficulty
arises if a limit cycle that has not been predicted because the loci are
quite close but do not actually intersect, appears in the physical system.
These discrepancies between the predicted and observed limit cycles are
obviously due to the neglect of circulating harmonics in the system. Fortu-
nately most servo systems contain linear elements which act as effective

low pass filters. Consequently, eventhough the output of the nonlinear ele-
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ment be rich in harmonic®, in a complete trip around the loop the harmonics
may be so attenuated that the input to the nonlinear element is again nearly
sinusoidal. This discrimination against higher harmonics tends to increase
with the complexity or order of the system. 1In this lies one of the great
attractions of the method since it means that more complicated systems for
which conventional methods might be completely impractical are most effec-
tively and simply handled by describing function method.

E. C. Johnson2 has suggested a method to evaluate the correction terms
which correct both amplitude and frequency of the limit cycle as predicted
by the describing function method. The derivation is limited to single
valued differentiable nonlinear functions, eventhough Johnson has applied
the correction terms to a nonlinearity which does not meet the requirements
stated above. Essentially this method consists of expressing the amplitude
and frequency of the limit cycle in two separate power series of a perturba-
tion parameter p. When yu is zero both the series reduce to the solutions
obtained from the conventional describing function, and when p=1 the series
represent the correct solutions. The evaluation of the coefficients of the
power series is very complex and in the main this analysis simply serves
to give better feeling for the relative accuracy of the describing functions.
Since the generated describing functions in this dissertation are amplitude
and frequency sensitive, the accuracy of the results for the sample problems
was checked from the actual analog computer simulation of the problems.

The details of the analog computer simulation and the comparison of the
analog results with the theoretical predictions are shown in Appendix VII

and Appendix VIII.
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CHAPTER VI
TRANSIENT RESPONSE AND CLOSED LOOP FREQUENCY
RESPONSE FROM DESCRIBING FUNCTION DATA

The primary functions of describing function analysis and design are
to check stability of a nonlinear system and to design s compensation
which provides a stable system. Prediction of the step response and the
closed loop frequency response of the nonlinear systems is also desired.
Some attempts have been made to predict the closed loop frequency response
and transient response characteristics of nonlinear control systems by
applying linear-frequency-response correlation techniques in conjunction

with the describing function.

6.1 Transient Response: For a nonlinear system, the principle of super-

position is not valid and therefore the correlations between the frequency
response and transient response which are developed for linear systems are
not strictly applicable to nonlinear systems. By replacing the nonline-
arity with its describing function, the control system is essentially line-
arized and therefore the transient performance of the linesarized system
may be estimated. But this estimate is not accurate as is the case with
linear systems. For a complete system design, it is necessary that a
satisfactory transient response be obtained. Quantitative predictions of
the transient response are desired but for a linearized nonlinear system

only qualitative predictions are possible which are also useful.

e s . s 21 .
Finnigan Approach: Finnigan has suggested a method of computing an
approximate transient response of a nonlinear system to a step function
with the aid of root-locus. The particular nonlinearity considered in his

work is that of backlash. The method starts with the modification of linear
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root locus by the describing function. When the describing function does
not introduce a phase shift, the root points for the various amplitude
input signals to the nonlinearity are computed and marked on the linear-
system root locus. The root locus itself has to be modified using the
phase angle and gain when the describing functions introduce a phase angle.
It is noted that for a lightly dampened system, the transient oscillations
are nearly sinusoidal and any half cycle may be approximated fairly accu-
rately as a sine wave. The selection of the amplitudes of the approxi-
mating sine wave is carried out as follows. First the system is assumed
linear and the percent overshoot for a specified step input is determined.
The peak displacement is then computed and this value is used as an approx-
imation to the peak to peak amplitude of the first segment. Since the
amplitude of the input to the nonlinearity is known, the roots are imme-
diately located and with these roots the peak overshoot is again determined
and the process is thus continued. When a describing function of the non-
linearity does not introduce a phase shift, the application and interpre-
tation of the results using this method is not difficult. But when the
describing function of the nonlinearity introduces a phase shift, another
complication arises with the fact that the root locus on the real axis

of the linear system is converted to a locus with the complex values. Even
if an assumption of symmetrical root locus along the real axis is made, it
is hard to interprete physically by virtue of the fact that a real root is
suddenly replaced by a complex pair of roots. The extension of this method
to the describing function which are frequency and amplitude sensitive

appears to be almost impossible.

Kochenburger Approach: Another method for a qualitative correlation is

suggested by R. J. Kochenburger1 for relay servos. The first step in this
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method is to plot the Nichols plots of the describing function of the non-
linearity similar to Figure 5 through Figure 11 and |GL\ versus OL curve
and establish that the system is stable. Since the Nichols plots of the
describing function represents a locus of the critical points, the entire
closed loop frequency response may be determined for each point by super-
imposing M and N contours centered at each critical point and reading off
the M and N values at the intersection of these contours with the \le
versus GL curve. The describing function considered by R. J. Kochenburger
is amplitude dependent only. A specific point on the Nichols plots of the
describing function represents a certain input amplitude of the sinusoid
and a specific resonance peak Mm and the corresponding resonance frequency
W which can be determined by the point of tangency between the \GL\ versus
GL curve and some M contour. This procedure is repeated for several other
points on the Nichols plots of the describing function and the plots of
Mm and w versus the amplitude of the sine wave are made. The general
characteristics of the step response can now be deduced qualitatively

from these curves. Such a deduction is postponed until a method for ob-
taining such curves for the multiple nonlinearity case is outlined.

When a control system contains either of the multiple nonlinearities
presented in Chapter III, the stability analysis of the system is first
carried out as indicated in Chapter IV. Note that for a specific control
problem containing the multiple nonlinearities, Nichols plots of the de-
scribing function are a family of curves. In such a family of curves the
points of constant (8/1) are indicated (Figure 5 through Figure 11 and
Figure 15 through Figure 20 along with Figure 24). Since 6 is a known
fixed quantity for a given problem, the constant (8/I) points represent

a certain amplitude I of the input sinusoid to the multiple nonlinearities.
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The first step, therefore, is to select one constant (8/1) line say (6/11)
from the family of describing function plot. At a point on this line
superimpose constant M and N contours. Remember that this selected point
corresponds to a certain frequency. Find the M contour which passes or
touches the lGL\ versus GL locus at the same frequency and note the fre-
quency and M value. Repeat this process at several other points on the
constant (6/11) curve noting at each point the frequency and M value.
Select the largest value of M amongst the recorded values and the corre-
sponding value of the frequency and enter this in a table against Il'
--)

Repeat the entire process for many other values of I, say (6/12, 6/13
and note the corresponding maximum values of M and frequencies. Plot the
recorded values of Mﬁ and frequencies against the values of I. From
these curves the general characteristics for the step response can be
qualitatively deducedl. If Mﬁ is small for large input signal ampli-
tudes I, but large for small input signal amplitudes, then for a step in-
put it is expected that the system will be well dampened with moderate
peak overshoot; however as the amplitude of oscillations decreases, the
system dampening decreases and the oscillations will persist with rela-
tively slow decrement. If the resonant frequency is high for large in-
put signals but decrease with decreasing amplitude signal, then the fre-

quency of transient oscillations will decrease as the oscillations die

out.

21-23,6,18

6.2 Closed Loop Frequency Response: Many authors have pre-

sented various methods of finding closed loop frequency responses of
nonlinear control systems. The procedure to find such a response invari-

ably begins with the conventional describing function which is only am-
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plitude sensitive and in some cases extension is suggested for the fre-
quency sensitive describing functions.

. . . . . 8
Gibson's Approach: For a single-valued nonlinearity Glbson's1 approach

appears most practical and straightforward.

NON-

r(t) e(t) LINEARITY

GL(s) c(g)

Figure 26 - A Control System Containing Single Valued Nonlinearity

In terms of Figure 26

e(jwo) 1

r(on) 1+ GD GL(JwO)

Where GD is the describing function of the single valued nonlinearity and
let r = R sin wot.

Assuming that the basic assumption of the describing function holds
for this system, then e =1 sin(wot + ¢). The magnitude relationship of

Equation (10) would be

| Ll

1
R 1+ GD GL(JwO)

(11)

Knowing the linear transfer funetion GL(S), it is possible to rearrange
Equation (11) such that the left hand side of the equation will consist
£ 1 .
of only GD
. =« + 3
Let GL(JwO) (wo) i B (wo)

_ 1

1
then = = -
+ +
R (1 GD) jB GD
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' <+ D 2+ 246, + (1 + RYIP) = 0.0
or
\
Gy = - — 2t —— \/x2-<-<2+52><1-R2/12> (12)
2 + %) «? + 8%

Note that while deriving Equation (12), use is made of the fact that GD
is real. Since GD is a function of I, both sides of the Equation (12)
can be plotted as a function of I with a fixed value of R and W, The
left hand side is a familiar describing function plotted as a function
of the amplitude of the input sinusoids and needs to be plotted only
once. The right hand side of Equation (12) has to be plotted for several
values of W, but keeping R fixed throughout. The intersection of GD lo-
cus with the locus of the right hand side of Equation (12) represents a
steady operation point for each frequency. Now knowing the amplitude I
and the frequency at the intersection point lcl can be obtained, since

|c | = 1, GD' GL(jwo) . The quantity \cl versus frequency can then be
plotted. This is the desired result. Sometime it is possible to find
two stable intersections between GD locus and the right hand side of
Equation (12) versus I locus in a narrow band of frequencies. This is
the so called jump phenomena, peculiar to nonlinear systems.

When the nonlinearities are nonsingle valued and the describing
function of which may be a function of amplitude and frequency, Hill's23
method or Thaler's6 method for finding closed loop frequency response are
convenient. There is essentially no difference between the two methods.
Thaler's Method: For the system shown in Figure 27 the multiple nonline-

arities may be either of the two for which the describing function is

generated in this dissertation.
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r(tXb’\ e

N H(s) — N, , 6 (jw ) >

Figure 27 -~ A Control System Containing a Multiple Nonlinearity

Let r = R sin(wot) and assuming GL being a low pass filter let

e =1 [Ein (wot + $z] . Now

C(on) ) GD GL(on) .
R(on) 1+GD GL(JwO)

Usually for a constant value of R and varying a @ the |c| versus

w, curve is desired. The procedure used to determine the frequency re-
sponse curve 1s similar to that followed in estimating the transient re-
sponse qualitatively. For constant values of I, a family of M versus
frequency and N versus frequency curves are generated. The Bode plot of
the linear block GL(jwo) is plotted and used as a nomograph. From such
a Bode plot the value of | GL I db is found for any frequency. Since

,c(jwo)l =1 IG(jwo)I I GD(I,wO)I for a falue of 1 and W, lc I can be
determined. From the relationship M = ‘c(jmo)L/1R(jwoﬂ the wvalue of R
is determined since the value of M for a frequency w, and I is already
known. This value of R is marked on the M and N versus frequency curves.
This process is continued for many other values of I and w - The locus

of all the points of a constant R is the desired frequency response curve.
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Hill's Method: This method is based upon a functional transformation
similar in philosophy to the Nichol's chart for linear systems. From
a consideration of Figure 27 the following equations can be written.

Let r = R sin wot.

E(jwo) 1
R(jmo) 1+ GD(I,wO) GL(jwo)
or
1
E|{«w ) = : r| o
l I o 1+ IGD|L¢D|GL|<Y(wO) l I
= L ,R| <¥(w ) (13)
1-+|GD| <¢D |GL| <Y(wo) o
where — _
1
V(w ) = argument of | +— 6 (T 76.36, (G )
e R
Define
1
zdb = 20 log -
10 1 + GD(I,mO)GL(JwO)

Considering magnitudes of Equation 13 only the relation,
|E | ab = zab + Rrav (1)

can be written. The computational procedure begins by assuming a value of
IEl db. Since GD is a function of IE Idb, zdb can be computed only when
|E| db is known. If Zdb and Rdb adds to the assumed value of |E| db, then
a solution to Equation 14 is indicated. The computation of Zdb from an

assumed E db is accomplished from a chart for the functional transformation

1
1 + Flw J)<b(w )
(o] o

F(w )<6(w ) to
O o]
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This is similar in concept to the familiar Nichol's Chart. In fact, the

required transformation, is accomplished by using a conventional Nichol's

Chart, which is inverted. Such a chart is often called a Lohecin Chart.

Again, the object is to find the closed loop frequency response of the

system for a fixed amplitude of the input R and varying W - The follow-

ing steps indicate the procedure for finding such a response.

(1

(2)

(3

4

(5)

(6)

For the given problem of Figure 27, select the appropriate

Nichols family of - éL from Figure 5 through Figure 11 or
D
Figure 15 through Figure 20.

Plot 20 log, GL(jwo)l versus phase angle of GL(jwo) with

frequency as a parameter and superimpose this curve on the
Nichols family selected in step (1).

If the family of plots selected in step (1) is from Figure

5 through Figure 11, then on such plots the lines of con-
stant 6/I and Two are indicated. For a given problem, & and

T are known. So these lines represent constant I and constant
w_ lines. 1If the plot selected is from Figure 15 through Fig-
ure 20, then the superimposed curve of Figure 24 at a particu-
lar frequency, represents a constant frequency line. On Fig-
ure 24, the points of the ratio 0/I are indicated.

Assume a value of I somewhere on a constant W line on the
Nichols family selected in step (1) and place the origin of
the inverted Nichol's or Lohcin Chart on this point.

At the same @, point on the curve plotted in step (2), read the
value of Zdb from the overlay of the Lohcin Chart.

Add the assumed Rdb to Zdb found in step (5). If this equals

the assumed value of Idb in step (4), then a solution to
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Equation 14 has been found. There may be several Idb
solutions for the same w, line. If a solution is not
obtained, select another Idb point and repeat the pro-
cedure.

(7) After finding a solution point as indicated in step (6),
place the origin of the Nichol's Chart on this point and
read the value of (C/R) db from the overlay correspond-
ing to the frequency w  on the curve plotted in step (2).
Add to this wvalue of (C/R)db, the assumed value of Rdb.
Thus the required value of Cdb is obtained. This is the
desired closed loop response for the input r = R sin wot.

The closed loop frequency response derived from the conventional
describing function fails to indicate the possible existence of subharmonic
oscillations and the stability of the forced oscillations. Dual input de-
scribing function (DIDF) is an attractive tool to determine the stability
of forced oscillation, the possible existence of jump phenomena and sub-

harmonic oscillations.

DIDF (Input Sinewaves Harmonically Related): The dual input describing
functions is derived by the same procedure as the conventional describing
function, with the exception that the nonlinearity has two sine waves at
the input, one of the sine waves being a multiple or harmoniec frequency

of the other. That is,

x(t) = 1 cos(wot + ¢) + B cosn w t

The magnitude of the DIDF is defined as,

amplitude of desired frequency component in output
amplitude of the same frequency component in input.

IDIDFI =
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The phase shift of the DIDF is defined as the shift from input to output
of the same frequency component. Since there are two components in the
input, a describing function is defined for each. Each DIDF for any non-
linearity is a function of at least four parameters, I, B, ¢ and n. When
the nonlinearity contains an energy storage element, then the DIDF is a
function of W, in addition to the four parameters just mentioned. As
pointed out in reference 25, a tremendous amount of data must be obtained
and then manipulated even for a single valued nonlinearity such as satura-
tion.

The procedure of deriving the families of the DIDF plots is as follows.
First of all the value of 'n' is assumed and held fixed. Then for a fixed
value of I, B is changed, while the computation of the DIDF is carried out
for values of ¢ between zero and 2m. A digital computer is necessary to

compute the DIDF and a representative flow chart is shown in Figure 28.

INPUT | READ SET SET SET INPUT TO
I, B,n 0.0 F 7w t=0.0 THE NONLINEARITY

-©-
n

CALCULATE OUTPUT
OF THE NONLINEARITY

ADJUST
¢ > ANALYSE OUTPUT
TEST A OF THE NONLINEARITY
¢ < 2n
PRINT = TEST ADJUST
DATA wt < 20 wot = wot + INCREMENT
0 —

Figure 28 - A Flow Chart Indicating The Computation of DIDF
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The use of the DIDF can be indicated by considering a control system

shown in Figure 26.

()

(2)

Stability of the forced oscillations: - Let the input to

the system of Figure 26 be r(t) = R sin wot and then

evaluate c(t) and e(t) by the conventional describing func-
tion method. Let e(t) = I sin (wot + ¢). To investigate

the stability of the evaluated steady state solution, the

feed back loop is broken, but a signal c(t) equal to the
steady state solution is injected back to the system. 1In
addition to this signal, a small signal of frequency nwo/2n

is also injected which gives rise to the output c(t) + O cos
(nmot + v). The evaluation of & cos (nmot + v) is accomplished
through the known DIDF of the nonlinearity. As n is varied
both & and ¥ vary, and may be plotted on the complex plane.

If this gain locus encloses (-1,0) point, any slight dis-
turbance will initiate oscillations of increasing amplitude,
so that the steady state conditions assumed initially are
unstable or divergent.

Sub-Harmonic Oscillations: ~ The response of a nonlinear system
to a sinusoidal signal, sometimes can be modified in amplitude
and phase by the presence of the sinusoid of a harmonically
related frequency. This effect modifies the loop gain of the
system, and may make the closed loop continuocusly oscillatory;
the frequency of oscillation being harmonically related to the
input frequency. The DIDF enables the occurence of the sub-
harmonic oscillations to be predicted quantitively. Since the

frequency of the subharmonic oscillation is of the order of the
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natural frequency of the linear system, the system response is
small at the input frequency considered. The first step in
predicting the subharmonic oscillations is to break the feed
back loop and inject a subharmonic signal of frequency % @
% w etc. For the system to oscillate continuously at a
subharmonic frequency, the over all open loop gain for this
low frequency component must be unity. For a fivxed amplitude
of the input signal, the DIDF family is known for various
amplitudes of the signal at the subharmonic frequency. This
information is available when the DIDF of the nonlinearity

is evaluated. This DIDF family is then superimposed on the
open loop frequency response of the linear system. The locus
of the DIDF of a particular amplitude of the subharmonic
signal which intersects the linear system locus at the sub-
harmonic frequency determines the amplitude of the possible
oscillations of the system at the subharmonic frequency.

The DIDF may be used to calculate the harmonic content of forced
oscillations. There remains, however, the problem of computing and mani-
pulating a mass of data while deriving the dual input describing function.
Also the DIDF can be employed only when the sine waves are harmenically

related.

Approximate DIDF, Boyer's Method: Boyer24 has suggested an approximate
dual input describing function which can be used teo evaluate the stability
of the forced oscillations. The derivation of the approximate DIDF has
been confined to simple single valued nonlinearities having no energy stor-
age elements. The derivation of the approximate DIDF is achieved in three

steps. Let the input to the nonlinearity be x(t) = I sin wot + B sin Bt,
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where B>>wo.

(1)

(2)

(3)

The first step is to develop an equivalent gain of the non-
linearity under consideration. This is accomplished by
applying a sine wave plus a d-c component to the nonlinearity.
That is, let w, = 0 and I = A0 or x = AO + B sin Bt. Then

the output of the nonlinearity can be represented by,

A
output = AV + B sin Bt + B" cos Bt + - - -

The equivalent gain is defined by,

K(A , B) =
o

D>|B>
<

o]

Next the representative output of the nonlinearity is obtained
by considering the input as x = I sin wot + B sin Bt. Since

B >> w the value of the W component in the input may be
considered constant over a cycle of the B component. This
constant value corresponds to a certain value of Ao’ and the
corresponding equivalent gain is known from step (1). So a
plot of AV versus wot for the given nonlinearity can be con-
structed with B as a parameter. This is called the representa-
tive output. Note that the representative output is not the
actual output of the nonlinearity.

The last step is to obtain the fundamental component of the
representative output by Fourier Analysis. Since the wave
shape is known, but its equation may not be known, the approach
for finding the fundamental component may be a graphical or
trignometric. The ratio of this component to the amplitude of
the @, component which is I, gives the magnitude of the approxi-

mate DIDF. For the single valued nonlinearities considered by
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Boyerzu, the approximate DIDF are in general functions of I
and B. For B = 0 the approximate DIDF reduces to the conven-
tional describing function.
To illustrate the application of the approximate DIDF consider the
control system shown in Figure 24. The input to the nonlinearity is
r = R sin wot and the object is to determine the values of R and the
corresponding values of @, for which the system is unstable. The first
step is to plot the Nyquist plot of the linear system GL’ and then the

Nyquist plot of ( - ) for values of B which will intersect the

—
DIDF
linear system Nyquist plot when superimposed. The value of B and the

value of approximate DIDF at such an intersection, uniquely determines

the value of I, since the approximate DIDF is a function of I and B only.
Knowing I and the value of the approximate DIDF of the nonlinearity, the
output c(t) is known. With a simple closed loop calculation this can be
related to the input amplitude R and frequency W, - This, in turn, deter-
mines the value of the amplitude and frequency for which the system would
be unstable. It is impossible to determine the stability of the forced
oscillations or the occurence of the subharmonic oscillations by the con-
ventional describing function. But the derivation of the exact dual-input
describing function or even the approximate dual-input describing function
for the nonlinearities containing an energy storage element, appears to be
a most difficult if not an impossible task. A computer simulation provides

a simpler mechanism than the DIDF for investigating the stability of forced

oscillations and the presence of subharmonic oscillations.
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CHAPTER VII

CONCLUSIONS

The describing function method constitutes an evample of the appli-
cation of a quasi-linear method for the evaluation of a nonlinear system
performance. The method yields substantially accurate results for a cer-
tain class of nonlinear systems in which the linear portion of the system
essentially acts as a low pass filter. The families of describing func-
tion curves shown in Figure 5 through Figure 11 and Figure 15 through
Figure 20, make it relatively easy to predict the behavior of servomech-

anisms which contain either a deadzone and backlash separated by a first

"order linear block or a hysteresis relay and backlash separated by a

second order linear block. These curves should be of definite aid to the
control system engineer who is confronted with analyzing a system contain-
ing one of these particular nonlinearities. The generated describing
function curves are not only a valuable tool for predicting the stability
of a servomechanism containing such nonlinearities but also finding the
proper network to improve the system performance. They are also useful
in some cases where the performance of a linear system may be improved
by purposely introducing a nonlinearity in one of the components.
Although only two sample problems are given, there are several ways
in which the curves can be used in a problem analysis. For instance the
internal gain of the linear block between the two nonlinearities exerts
considerable influence over the effective backlash width. Thus in addi-
tion to controlling the overall system gain K, an additional factor must
be considered in using K. Also, the time constant T or zeta and o in

H(s) can be used as design parameters.
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In the sample problems application, the generated describing function
curves for analyzing control systems containing the multiple nonlineari-
ties, have indicated that reasonably accurate predictions of the ampli-
tude and frequency of the 1limit cycles can be made. This implies that
the presence of the harmonic components at the input of the multiple
nonlinearity does not modify the gain of the fundamental component appre-
ciably. It cannot be over stressed that this is not a general result,
because when the linear element in series with the multiple nonlinearity
does not constitute a low pass filter, then the circulating harmonics
may excessively distort the gain of the fundamental component. With this
in mind, it would not be difficult to produce a system in which the
method would not produce sensibly accurate results. Overall, the genera-
ted describing functions are so straight forward in application that having
predicted the oscillation parameters, the accuracy of prediction may be
assessed by estimating the harmonic distortion present under the predicted
conditions.

The technique presented here for obtaining the describing functions
of a particular nonlinear function can be used in obtaining the describ-
ing functions of any other nonlinear combinations. Therefore, it can be
placed alongside of the other nonlinear anlytical tools in the servo-

mechanism engineer's bag of tricks.
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APPENDIX I
COMPUTATION OF y(t), FIRST MULTIPLE NONLINEARITY

While deriving the describing function of the First Multiple Non-
linearity of a deadzone followed by a first order linear block and back-
lash, it is necessary to find the steady state output of the nonlinearity
when excited by a sinusoidal signal. Let the steady state output of the
deadzone nonlinearity be given by x(t) and let xl(t) represent only one
cycle of this output. The steady state output of the first order linear

block is denoted by y(t) and is computed as follows:

I w cos B
fe} - - - — - - - -
X, (s) o "t as,. bs_e es ds + 9 o354, bs+e es_ ds +
1 2 2 s
s+ w
o

bs -as -bs -es, -ds

—_e -e -e +e
2 2

S +Ww

(o]

where a = B/w_, b = (n-p)/w_, ¢ = (+p)/w , d = (2n-B)/w -

_ ol - -
yc(t) = i Xl(S) H(s) = K JL— m)

y (t) I w_cos B el sinw (t-a)
< = u(t-a) S A— e (t a)/,t-cos w (t-a) + S A +
K " 2 o TW
7% ©
T
o) -(t-a)/t _6(1_e—(t—a)/T)

—_— cosw (t-a) + w T sinw (t-a)-e
1+t © © ©

I wcos B - E%E sinwo(t—b)
+ u(t-b) 7 e - coswo(t—b) t— +
-§+0) (o]
2 o




+ u(t-c)

o)

1+’L‘2¢o 2
[¢]

yt(t) =

e

K

From which

I os
woc B

L

+ 0

0 : (:;sw (t-b)+w T sin(t-b) -e
(1+sz 2) L o o

-(t-c)/T
e

(1_e—2ﬂs/w0)

I w cos
o B

T (e 2)
o

__° a/tT b/t e/t a4/t
T 2. e -e e

(e -

2

(-e

T

v

a/T+ec/T_ed/T+eb/t)

e

y(t) =y (£) -y (1

£-b
T o-6 (1-e

1 2
2%
T
cosw (t-c) + w T sinw (t-c) _e—(t—c)/T
o o o
—
X. (s) H(s)
Residue of 1 est at s = - %

-t/7
ot/

70

sinw (t-c)

- cosw (t-c) + —
o

(ea/T+eb/T_ec/T_ed/T

)
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APPENDIX II

COMPUTATION OF z(t), FIRST MULTIPLE NONLINEARITY

When the first multiple nonlinearity is excited by a sinusoidal
signal, the expression for the steady state output y(t) of the linear
block H(s), was derived in Appendix I.

Since y(t) had to be solved for various values of Tmo and I, it
seemed necessary to use a digital computer to compute y(t) for every
run. The computation of z(t) the output of the nonlinearity, from y(t)
was incorporated in the same digital program and numerical techniques of

integration were used to derive the describing function.

n

jﬁ z(t) sin w t dw t
0 o

(o]

AN

T
A = 2 z(t) cos w t dw t and B, =
1 TT o o) 1

o

and ¢ = Arctan (Al/Bl)
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APPENDIX III

DESCRIBING FUNCTION OF THE COMBINED NONLINEARITY OF DEADZONE AND BACKLASH

It is necessary to derive the describing function of the first multiple
nonlinearity over the entire frequency range. For values of the excitation
frequency w such that Tw << 1.0, the nonlinearities of deadzone and back-
lash can be considered adjacent to each other. The describing function is

then derived as follows:

Let x = sin wot. For 1-0 > W

-1
z(t) = -W/2 o< wot < B ; B = sin
= sin wot -0 -w/2 P < wot < /2 L = sin_l(l—w)
= 1 -0 - W/2 /2 < wot ST -
= sinwt -6+ W/2 n-L<wt<m
o - o =
b1 Tt
2 2 .
A = = z(t) cos w t dw t ; B, == z(t) sin w t dw t
1 b o o 1 b y o} o}
o o
B /2
A = 2 //h -W/2 cos w t dw t + v/A (sin w t - & - W/2) cos w t dw t
1 T o o} o (e} 0
o B
n-B
+ (1 -0 -W/2) cos w t dw t
o o
/2
-

iy
+ vjﬁ sinw t - 6+ W/2 cos wt dw t + ~/P W/2) cosw t dw t
o o o o o

=K

n-B ___J




z(t)
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wWo - 2W
b
B /2
2 j (1-w/2) sinwtdwt+/ (sin w t - 0 - W/2) sin w t dw t
i o) o o o o
o P
=X
f (1 -5 -W/2) sinw t dw t
o o
/2
)
- T
I sin w t - 0 - w/2 sinw t do t + f (w/2) sin w t do t
o o o o o
-« -8
2|n . 1. 1 .
;E—B—Zbcosﬁ+§s1n2ﬁ+(1—b)cos-<-E31n23I
For W/2 <1 -0 < W
= (1 -0 -W2) o< tsB ;31=sin'1 (25 + W - 1)
= (sin w t - 0 - W/2) B, <wt < n/2
o 1l - "o -
= 1 -0 -W/2 T[/2_<_wotf‘l'[
)1 b1
2 2 .
= = z(t) cos w t dvw t ; B, == z(t) sin w t dw t
b o} o 1 b o 0
) o
B1
= 2 j -(1 - 0 ~W/2) cos w t dw t
P o o
o
/2
+ f (sinw t - 8 - W/2) cos w t dw t
o 0 o
ﬁl



!

T

+

/2

Al
(V)

f (1 -0 -W/2) coswt dw t
o o

74

B

—

+ f (sinwt -0 -W/2) sinw t dw t
0 o o
B1

+ f (1 -0 -W/2) sinw t dw t
o o

Various values of GD(b,w)

program.

and ¢ were obtained by writing a digital
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APPENDIX IV

COMPUTATION OF y(t), SECOND MULTIPLE NONLINEARITY

When the second multiple nonlineafity of an ideal relay followed by
a second order linear block and backlash is excited by a sinusoidal signal
of frequency w, then the output of the realy is a square wave having the
same frequency as the excitation frequency. Therefore, the input to the
second order linear block is always a square wave of the excitation fre-

quency. The steady state output y(t) of this linear block is computed as

follows:
Let xl(t) = x(t) - - - - - 0o <wt<2n
= 0.0 - - -~ - wt>2n
Now yt) =y (8 -y (£) - - - - - - - - - - (1)
-1 K xl(s)
Where yl(t) = =
s /wn + 2§s/wn + 1
st
. xl(s) K e 1.0
and yt(t) = Z:Resldue of 5> s %
(s /wn + Z&S/wn+1) (1-e oy
2
at s/w_ = - ¢ j’g -1
_ 1 2 o 2 o 1 o
But xl(s) =-lz-35e + Se -Je
L —
._1 _1 (,uo mo mo
yl(t) = -—-——2_— 1 - 2e - € + 2e
s(s“+as+1)




Where

Now

y.(t)

Where

yt(t)

yt(t)

a = 27, wn =1.0
1 - 1l _ s+a
s(sz+as+1) S sz+as+1

_[:E_— Qe—at/z sin (w +

— -a/2(t-B/w )
+ 2 1 - Qe ©

SN

g

76

sin (w(t—ﬁ/o.»(_))-#q)-_)--1 u(t—ﬁ/mo)

—

- _as2(e - X8y _
-2 11 - Qe sinEa(t-n+B)+q;] u(t—m)
w w
o] pr— o]
1
Q = 3
1-a /4
1
w= (1-a’/m)?
1
2 2
B (1-a" /&)
¢ = Arc tan ———;75——
_Bs isd _2n
-1 (1-2e “° 42¢ %o Wo ~ y St
s(s+as+1) _2ns
“
(l-e )
at s = - a/2 + jw
and s = - a/2 - jw
-1 1 2(l-e ©) e st
2 N - 21s €
s(s " +as+1) —-—
©y
(1-e )
_Bs
“o
25' -1 [; _ 2e i] est
s(sz+as+1) —ns/wo

l+e



-3(-a/2+jw)/w0

- -a/2+jwta _ _2e
v (8 23w E “w(-a/2eiwi/e, | ©

l+e

-B( -«si/Z—J'w)/oo0
+ (-a/2-jw+a)

77

(-a/2+jw)t

1 - 2e e(-a/2—jw)t
-2jw —n(-a/2-jw)/wo

l+e
— . SCEE)
a . wo .
y. () = e_ 2" =2 |sinwt - 2 e 2w, sinw(t-p/w,)re 51nw@—ﬁ/wo+n/wo)
t 2w na/w na/wo
(1+2e cos — +e )
T ©
o
E(EIE) o
a 2w
e Zwo cosw(t-B/wo)+e cosw(t-p/wo+n/wo)
+ coswt - 2
na/w it na/w
(1+2e cos ™ +e O)

(o]

and then y(t) = y,(t) - v (t).

]
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APPENDIX V

COMPUTATION OF z(t), SECOND MULTIPLE NONLINEARITY

When the second multiple nonlinearity is excited by a sinusoidal
signal, the expression for the steady state output y(t) of the second
order linear block is derived in Appendix I. Since y(t) had to be com-
puted for various values of wo/wn and zeta, a digital program was written.
From the expression of y(t), z(t) the output of the backlash element was
computed by modifying the same digital program. Numerical techniques of
integration were used to find the fundamental component in z(t). From

this a family of describing functions was generated.

n n
A = 2 z(t) cosw t dw t ; B, = 2 z(t) sinw t dw t
1 T o o 1 T fe} o
o o
2 [}
GD = A1 + B1 and ¢ = Arc tan (Al/Bl)
'l—ldbs = 20 log ( 1 J
| GDI Cpl
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APPENDIX VI

DESCRIBING FUNCTION OF THE COMBINED NONLINEARITY OF RELAY AND BACKLASH

It is necessary to find the describing function of the second multi-
ple nonlinearity over the entire frequency range. For values of @, such
that wo/wn << 1.0, the relay nonlinearity and the backlash nonlinearity
can be considered adjacent to each other. The describing function of

this combined nonlinearity was derived as follows:

x(t) = sinw t
o
z(t) = (1-W/2) o < wot <m
= - (1-W/2) m < wot < 2m
i 27
_ 1 1
A1 == ,( (1-W/2) cos mot dwot - = ‘Y.(I—W/Z) cos wot dwot
o T
= 0.0
T 2T
1 . 1 .
B1 == .Jf (1-W/2) sin wot dwot - = ,f‘(l_W/Z) sin wot dwot
o Tt
1 1
= - = (1-W/2) (-1 -1) + p (1-W/2) (1 + 1)
_ 4
== (1-w/2)
_ 4
GD = = (1-w/2)
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APPENDIX VII

ANALOG COMPUTER SIMULATION I

An analog computer simulation of the sample problem discussed in
Chapter IV was used to varify the analytical results. The block diagram
of the sample problem containing first multiple nonlinearity is shown in
Figure 29, while Figure 30 represents its analog computer simulation.
Table XIV indicates the analog computer results as well as the analytical

data.

V4
/ t . "
_ s(s+1) —’lzl.p‘— 0.1s+1 | [1.°

Figure 29 - Block Diagram of the Sample Problem Con-
taining First Multiple Nonlinearity

TABLE X1V

The Analog Results Versus Analytical Results, First Multiple Nonlinearity

No. SYSTEM ANALYTICAL DATA ANALOG DATA
PA TER LIMIT CYCLE LIMIT CYCLE
of Fig. /1
Frequency |[Amplitude | Frequency| Amplitude
. No.
run OK/MW Kl
rad./sec. I rad./sec. I
1 1.0 5.0 5 0.41 1.25 52.5 1.25 52.5
2 8.0 5 0.25 2.02 86.0 2.02 86.0
3 0.5 l10.0 9 0.23 1.55 93.0 1.55 93.0
4 3.0 6 0.59 1.0 36.5 1.065 38.0
5 . 5.0 6 0.38 2.0 56.5 2.02 57.0
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APPENDIX VIII

ANALOG COMPUTER SIMULATION II

82

An analog computer simulation was used to varify the analytical

results obtained in Chapter IV for the sample problem containing second

multiple nonlinearity.

The block diagram of the sample problem is shown

in Figure 31, while Figure 32 represents its snalog simulation.

The

results of the analog simulation and their comparison with the analytical

results is presented in Table XV.

+ e 5/21.5

s(s+1)

21.5

/

/

(sz+2és+l) 741.

/-

Figure 31 - Block Diagram of the Sample Problem Con-

TABLE XV

taining Second Multiple Nonlinearity

The Analog Results Versus Analytical Results, Second Multiple Nonlinearity

SYSTEM PARAMETER ANALYTICAL DATA ANALOG DATA

ZETA ; 5 SEE?BESS? AMPLITUDE zggQggzg? AMPLITUDE
0.1 10 0.42 r 16.15 0.42 16.15
0.1 7 0.512 j 13.4 0.512 13.4
0.1 5 0.685 12.5 0.685 12.5
0.1 3 0.823 15.0 0.823 15.1
0.4 10 0.331 16.55 0.331 19.0
0.4 7 0.377 13.85 0.337 16.0
0.4 5 0.415 12.05 0.415 13.5
0.4 3 0.475 11.0 0.4745 11.6
0.8 10 0.218 13.5 0.218 16.5
0.8 7 0.26 10.5 0.2565 13.2
0.8 5 0.29 11.9 0.2925 12.0
0.8 3 0.34 9.1 0.337 9.6
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